Крепление профилированного стального настила к прогонам покрытия по 3-х пролетной схеме. Крепление рекомендуется выполнять самонарезающими болтами M6-8gx20,56.099 ОСТ 34-13-016-77, через волну, а торцы настила в каждой волне. Соединение настила между собой осуществляется комбинированными заклепками ЗК-10 ТУ 67-74-75 с шагом не более 400мм.

Монтажные соединения запроектированы на временных болтах с последующей обваркой.

Стены здания выполнены из сэндвич-панелей, толщиной 120 мм, выполнен кирпичный цоколь на отм. +0.300.

По периметру здания решеток предусмотрена утепленная бетонная отмостка шириной 1,5 м по щебеночному основанию с утеплителем толщиной 100 мм согласно графической части проекта.

Усреднитель (2 шт.) (поз. №3.1/3.2 по ПЗУ) и насосное отделение (поз. №4 по ПЗУ) (1-й этап строительства)

Класс сооружения согласно по ГОСТ Р 27751-2014 - КС-2, уровень ответственности проектируемого сооружения согласно 384-Ф3 - нормальный.

Коэффициент надежности по ответственности принят y_n=1,0.

Усреднитель представляет собой вертикальный цилиндрический резервуар разработанный по типовому проекту 903-9-25.89 (применительно для резервуара объемом 570 куб. м.) на основании следующих нормативных документов:

- а) СП 20.13330.2011 "Нагрузки воздействия";
- б) СНиП 2.09.03-85 "Сооружения промышленных предприятий";
- в) СП 16.13330.2011 "Стальные конструкции";
- г) ПБ 03-605-03 "Правила устройства вертикальных цилиндрических резервуаров для нефти и нефтепродуктов".
- д) Типовой проект 903-9-25.89 Стальной бак-аккумулятор для горячей воды объемом 700 куб.м.

Усреднитель имеет коническое днище, имеющее уклон 1:100 от центра к краю усреднителя и конического безкаркасного покрытия, расположенные в комплексе с насосным отделением. Диаметр усреднителя— 10400 мм. Высота стенки — 7000 мм. Номинальный объем — 570,0 м3. Общий номинальный объем двух резервуаров — 1140 м3. За относительную отметку 0,00 принята отметка пола 1-го этажа, что соответствует абсолютной отметке 177,65.

Крыша усреднителя - безкаркасная коническая толщиной 6 мм. Днище состоит из сегментной части t=6 мм. Стенка усреднителя имеет 5 поясов толщиной от 9 до 4 мм. Для обслуживания оборудования, расположенного на покрытии и в стенке, усреднитель снабжен площадкой с ограждением, наружной лестницей Материал конструкций усреднителя C255 по ГОСТ 27772-15.

Несущими конструкциями фундаментов усреднителя является монолитная фундаментная плита толщиной 1000 мм. Размер фундаментной плиты под каждый усреднитель составляет 11,0 х 11,0 м. Отметка подошвы -1,000. Несущими конструкциями фундамента насосного отделения является монолитная фундаментная

Изм.	Кол.уч.	Лист	№док.	Подпись	Дата

плита толщиной 300 мм. Отметка подошвы -0,300. Между плитами предусмотрен деформационный шов – 50 мм.

Коэффициент надежности по ответственности принят y_n =1,0. Бетон фундаментов принят B20, W4, F150.

Основное и конструктивное армирование принято из арматуры класса А500С.

Гидроизоляция поверхностей, контактирующих с грунтом, выполняется гидроизоляционной мастикой ТЕХНОНИКОЛЬ №21 в 2 слоя по праймеру или аналог.

Под основанием фундаментов выполнить песчаную подушку из песка средней крупности уплотненной послойно по 25-30 см и проливкой водой до К упл.=0,98 до материковых грунтов отм. 175,60.

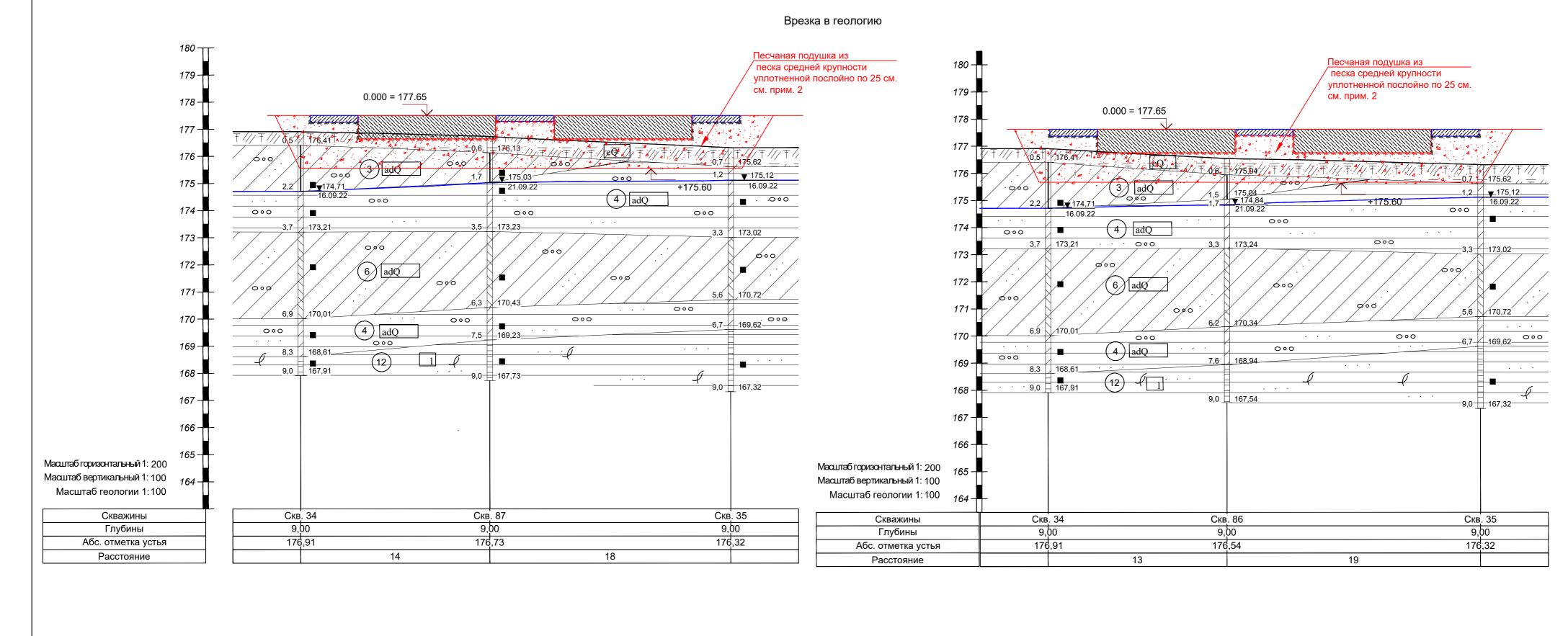
Песчаную подушку выполнить из песка средней крупности с влажностью W=8-14%, с послойным уплотнение по 20-30 см. Характеристики песчаной подушки после уплотнения должны отвечать следующим требованиям: p=1.70 т/м.куб, f=35 гр. ; c=0.02 кПа ; E=35-40 МПа; R/0=25 т/м.кв.

На основании данных инженерно-геологических изысканий,выполненных ООО "РНИИЦ" в 2023г. под песчаной подушкой с отм. +175,60 залегает глина коричневая, коричневато-серая, серая, темно-серая, мягкопластичная, легкая, с известковистыми включениями, ожелезненная, опесчаненная песком пылеватым, с включениями гравия и гальки, с включениями органических веществ (ИГЭ 4) с модулем деформации E=9 МПа. Расчетное давление на грунт составляет p=6,80 т/ м.кв, что меньше расчетного сопротивления грунтов [R]=13,5 т/м.кв.

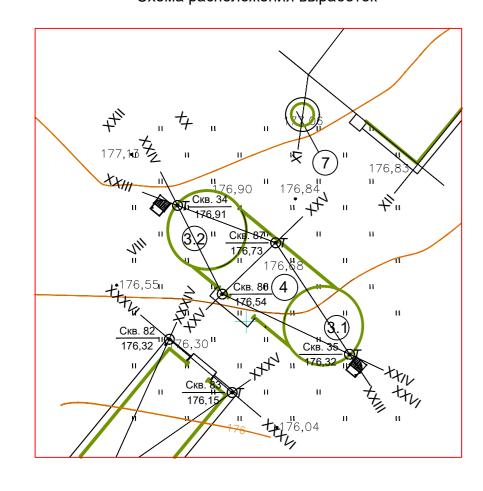
Осадка сооружения составляет $s=4.8\,$ мм, что меньше допустимого [s пред. $=15\,$ см] , относительная разность осадок сооружения составляет 0.0010, что меньше предельно- допустимого.

Основными несущими конструкциями насосного отделения являются металлические колонны из сварных квадратных профилей 200*10 по ГОСТ 30245-2003, применяемая сталь C255 по ГОСТ 27772-2021. Металлические балки покрытия из сварных квадратных профилей 200*10 по ГОСТ 30245-2003, применяемая сталь C255 по ГОСТ 27772-2021. Прогоны из сварных квадратных профилей 100*6 по ГОСТ 30245-2003; применяемая сталь C255 по ГОСТ 27772-2021. Сварные швы выполнить по ГОСТ 5264-80* электродами типа Э-50 по ГОСТ 9467-75*.

В насосным отделении используется таль ТШ 1,0-2-6 по ГОСТ 28408-89 грузоподъемностью Q=1,0 т. В качестве монорельса применен двутавр 18M по ГОСТ 19425-78*.


Лестницы и площадки для обслуживания усреднителей разработаны по серии 1.450.3-7.94 в.1 из горячекатанных профилей шв.16 по ГОСТ 8240-89, сталь С235 по ГОСТ 27772- 88;уголков 50х5 по ГОСТ 8509-93. Настил площадок – просечно-вытяжной лист ПВ506.

Ограждение лестниц, площадок по серии 1.450.3-7.94 в.1.


Крепление стальных конструкций производить на болтах нормальной точности кл.5.6 по ГОСТ 7798-70 и сварке.

При соблюдении принятых в проекте конструктивных решений прочность, устойчивость, геометрическая неизменяемость и эксплуатационная пригодность обеспечена

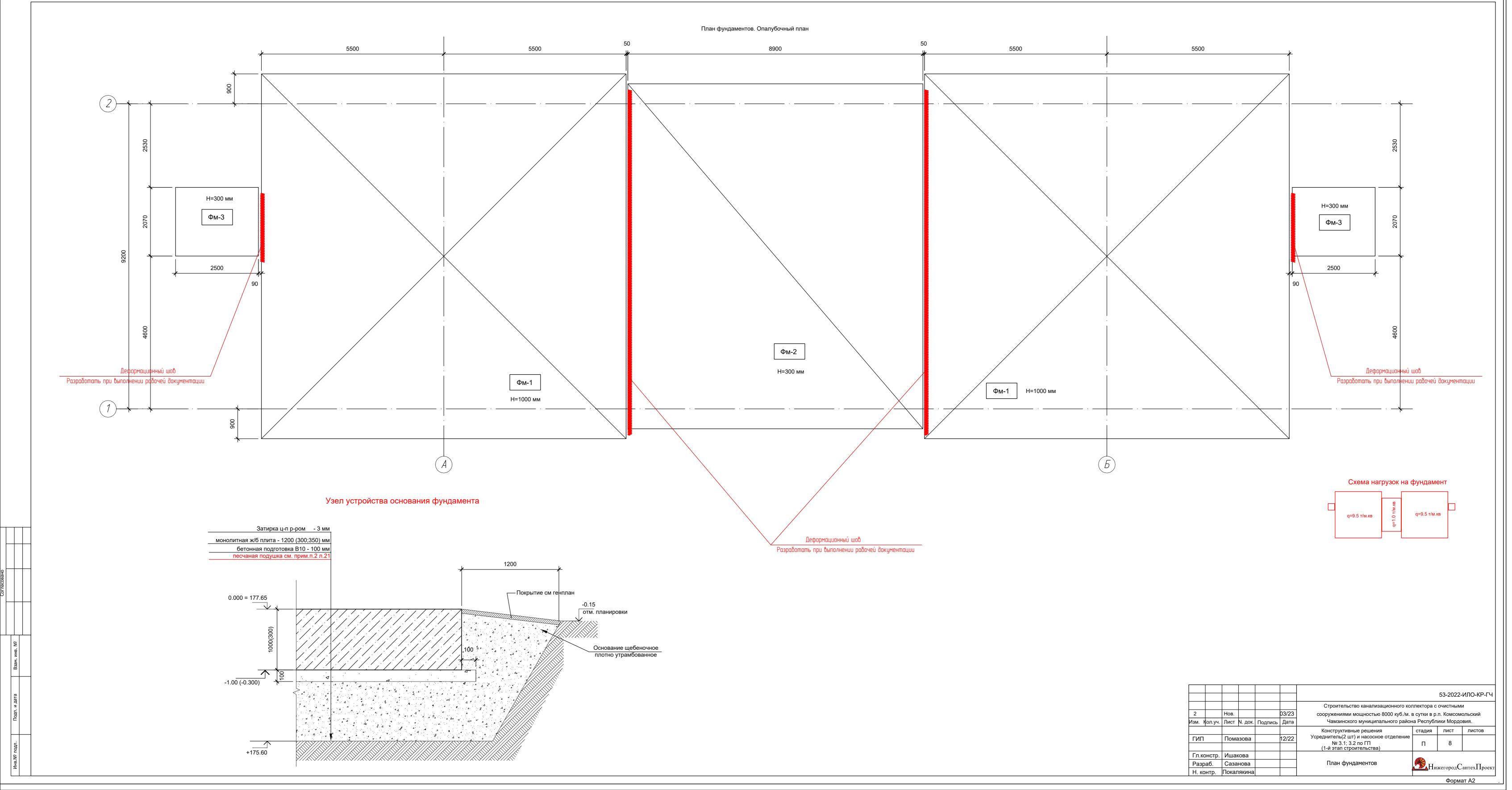
Изм.	Кол.уч.	Лист	№док.	Подпись	Дата

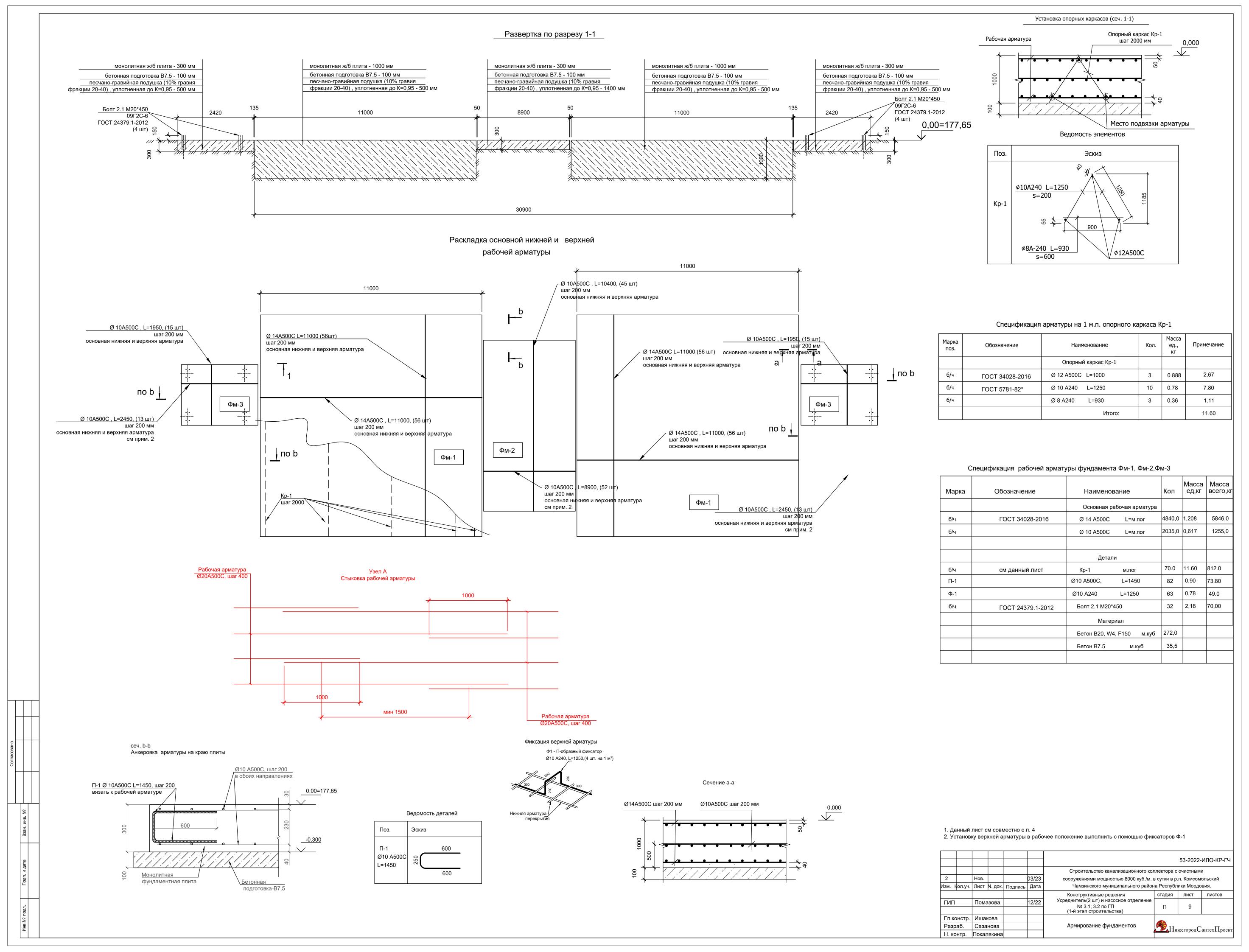
Схема расположения выработок

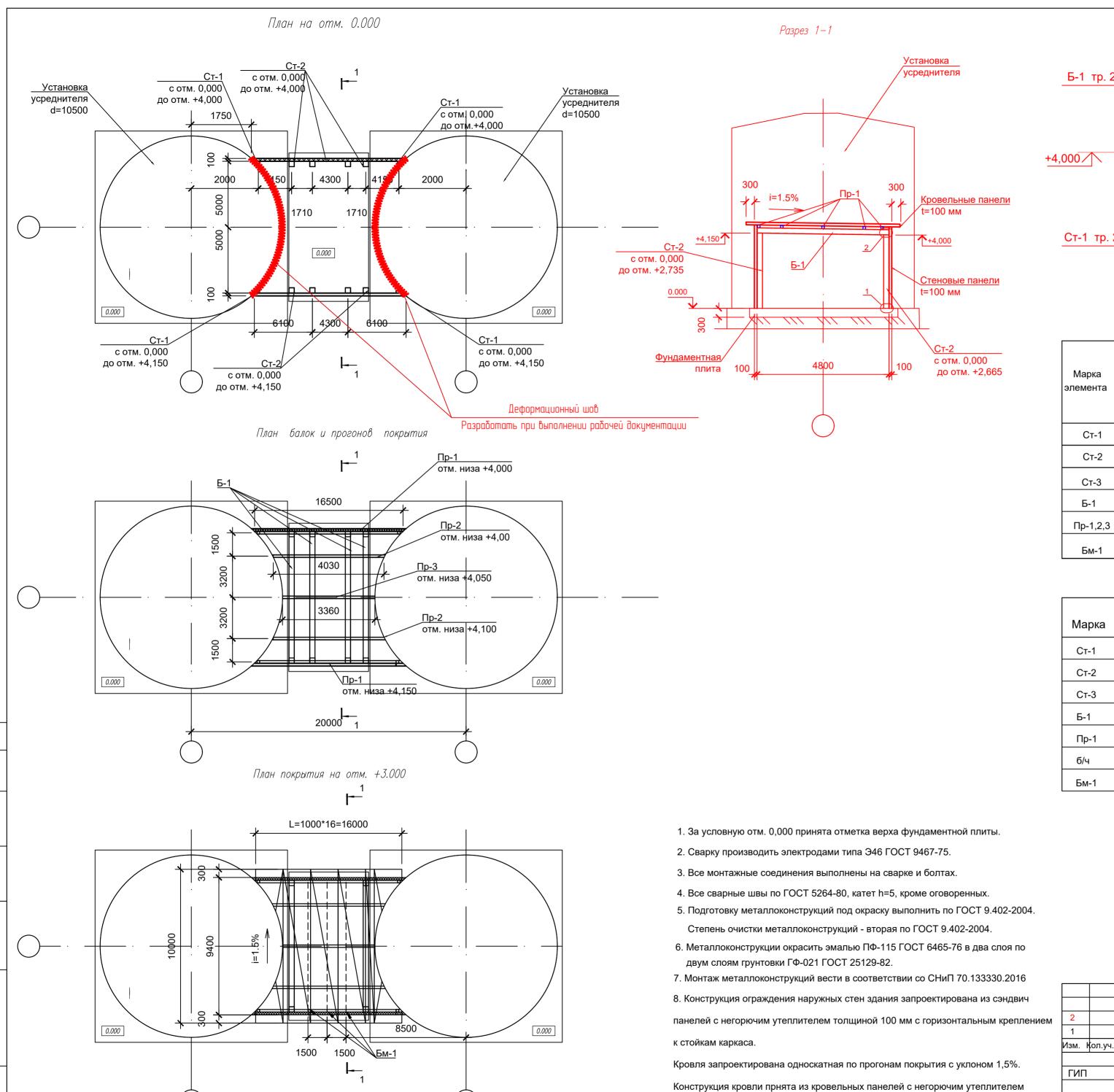
- 1. За относительную отметку 0,00 принята отметка пола 1-го этажа, что соответствует абсолютной отметке 177,60
- 2. Под основанием фундаментов выполнить песчаную подушка из песка средней крупности уплотненной послойно по 20 см до К упл.=0,98 до материковых грунтов отм. 175,60. На основании данных инженерно-геологических изысканий,выполненных ООО "РНИИЦ" в 2023г. под песчаной подушкой с отм. +175,60 залегает глина коричневая, коричневато-серая, серая, темно-серая, мягкопластичная, легкая, с известковистыми включениями, ожелезненная, опесчаненная песком пылеватым, с включениями гравия и гальки, с включениями органических веществ (ИГЭ 4) с модулем деформации Е=9 МПа.

Песчаную подушку выполнить из песка средней крупности с влажностью W = 8-14%, с послойным уплотнением по 25 см и проливкой водой.

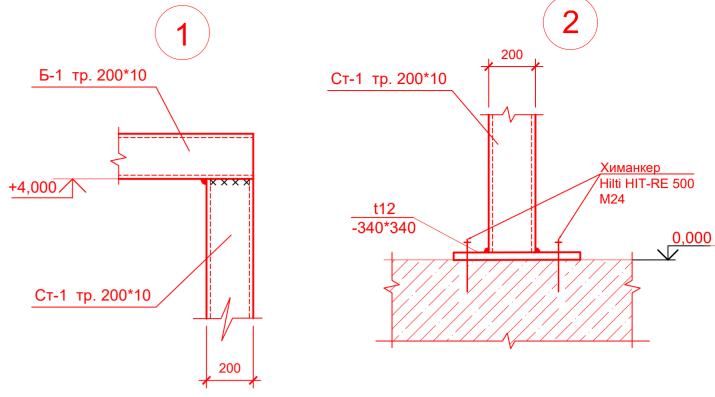
Характеристики песчаной подушки после уплотнения должны отвечатьследующим требованиям:


= 1.70 т/м.куб, f = 35 гр. ; c=0,02 кПа ; E = 35-40 МПа; R_0 = 25 т/м.кв.

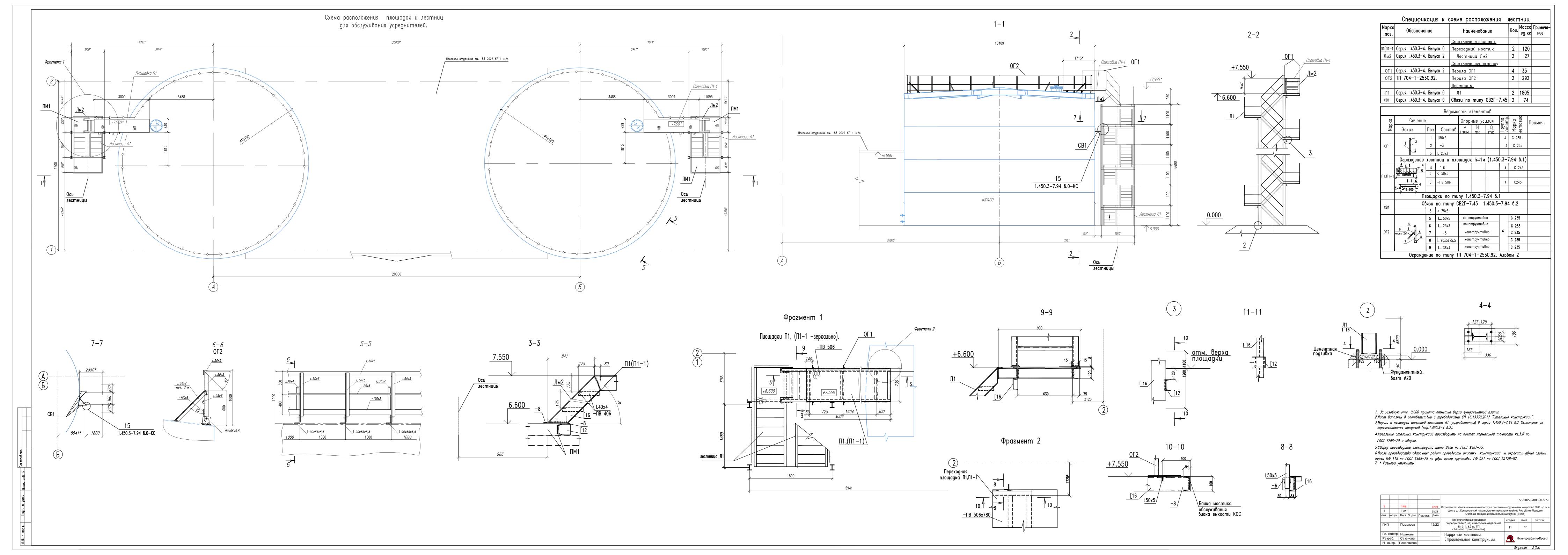

Расчетное давление на грунт составляет p = 6,80 т/ м.кв, что меньше расчетного сопротивления грунтов [R] = 13.5 т/м кв


Осадка сооружения составляет s= 4,8 см, что меньше допустимого [s пред. = 15 см], относительная разность осадок сооружения составляет 0,0010, что меньше предельно-допустимого [0,003] по прил. Д СП 22.13330.2016 «Основания зданий и сооружений». Актуализированная версия.

- 3. Обратную засыпку выполнить песком средней крупности. Засыпку производить одновременно со всех сторон , не допуская перекоса нагрузки . Засыпку с боковых поверхностей выполнять послойно не более 20-30 см с уплотнением до К упл = 0,95.
- 3. Бетонирование фундамента производить с тщательным вибрированием без технологических перерывов.
- 4. Все боковые поверхности фундамента , соприкасающиеся с грунтом,обмазать гидроизоляционной мастикой ТЕХНОНИКОЛЬ №21 за 2-а раза по праймеру ТЕХНОНИКОЛЬ 1


							5	3-2022-И	ЛО-КР-ГЧ
2		Нов.			07/23	Строительство канализационного кол	плектора с	очистным	ІИ
1		Нов.			03/23	сооружениями мощностью 8000 куб./м.	в сутки в р	.п. Комсом	иольский
3М.	Кол.уч.	Лист	N. док.	Подпись	Дата	Чамзинского муниципального район	на Республ	ики Мордо	овия.
						Конструктивные решения	стадия	стадия лист листо	
ГИП		Пома	азова		12/22	Усреднитель(2 шт) и насосное отделение			
						№ 3.1; 3.2 по ГП (1-й этап строительства)	П	′	
Гл.к	онстр.	Иша	кова					-	•
Разр	раб.	Саза	нова			Врезка в геологию	М.н		Сантех∏роек ^а
Н. ко	онтр.	Покал	тякина				<u>~~</u> ти	жегородС	лантех т т роек
							•	Форм	ат А2

толщиной 100 мм


Ведомость элементов

Сечение Усил Для прикре элемента	/силие икреплен	ия	Наименование					
элемента	эскиз	ПОЗ.	состав	Q, т	N, т	М, т*м	или марка металла	Примечание
Ст-1			тр. 100*6		5,2		C255	
Ст-2			тр. 200*10		2,2		C255	
Ст-3			тр. 80*4		-		C255	
Б-1			тр. 200*10	4,2			C255	
Пр-1,2,3			тр. 100*6	3,20			C255	
Бм-1	I		дв. 18М	1,2			C255	

Спецификация элементов к плану конструкций

Марка	Обозначение	Наименование	Кол	Масса ед,кг	Масса всего,кг
Ст-1	ΓΟCT 30245-2012	тр. 100*6 м.пог	10.8	17.7	191.20
Ст-2		тр. 200*10 м.пог	10.8	57.6	623.0
Ст-3		тр. 80*4 м.пог	4.20	9.6	40.35
Б-1		тр 200*10 L =10000	5	276.50	552.96
Пр-1		тр. 100*6 м.пог	22.40	17.7	395.80
б/ч	ГОСТ 19903-2012	-12 м.кв	1.15	108.35	108.35
Бм-1		дв. 18М			

							53-2022-ИЛО-КР-ГЧ			
1	2		Нов.			07/23	Строительство канализационного коллектора с очистными			
	1		Нов.			03/23	сооружениями мощностью 8000 куб./м. в сутки в р.п. Комсомольский Чамзинского муниципального района Республики Мордовия.			
	Изм.	Кол.уч.	Лист	N. док.	Подпись	Дата				
							Конструктивные решения	стадия лист листов		листов
	ГИП		Пома	зова		12/22	-{ № 3.1; 3.2 по ГП П 10			
	Г- и		14				(1-й этап строительства)			
	I JI.K	онстр.	Ишан	кова			Строительные конструкции	трукции		
	Разр	раб.	Саза	нова						аптеу Проект
	Н. ко	онтр.	Покал	іякина			пассолого стдологии	насосного отделения НижегородСантехПроек		

1. ОБЩИЕ ДАННЫЕ

Проектная документация "Усреднитель поз 3/1" выполнено по заданию на проектирование. Усреднитель педназначен для приема, хранения и выдаче.

> 2. ОСНОВНЫЕ РАСЧЕТНЫЕ ПОЛОЖЕНИЯ, ПРИНЯТЫЕ ПРИ ПРОЕКТИРОВАНИИ. И ПОКАЗАТЕЛИ УСРЕДНИТЕЛЬ

o cepuu
uu c
<i>28.13330.2</i> 0
PJIbHbIX
коррозии"
аль для
uŭ no
орка
орка
ra .
•
ваемое
pa

3. МАТЕРИАЛ КОНСТРУКЦИЙ

Для металлических конструкций усреднителя принята сталь следующих марок

Nº	Наименование конструкции	Марка	ГОСТ	Tun электродов		
n/n	Паименование консттрукции	стали	1001	no ГОСТ 9467-75		
1	Стенка	C255 Cm3cn5	27772-15 14637-89	· · · · · · · · · · · · · · · · · · ·		
2	Днище	C255 Cm3cn5	27772-15 14637-89	<i>346A</i>		
3	Покрытие	C255 Cm3cn5	27772-15 14637-89	<i>346A</i>		
4	Ограждение	C255 Cm3cn5	27772-15 14637-89	<i>346A</i>		
5	Штуцера и люки	C255 Cm3cn5	27772-15 14637-89	<i>346A</i>		

Автоматическая и полуавтоматическая сварки стыковых соединений листовых конструкций должны производиться с физическим контролем качества швов материалами, обеспечивающими соответствующие маркам свариваемых сталей (СП 16.13330.2011) механические и пластические свойства сварных соединений.

Качество сварных соединений и их геометрические параметры должны соответствовать требованиям:

- ручная сварка ГОСТ 5264—80*;
- автоматическая и полуавтоматическая ГОСТы 8713—79 и 14771—76.

Подп. и дата Взам. инв. N°

При расчете на прочность принимается полный залив усреднителя водой.

Обечайки люков и патрубков могут выполняться из прямошовных труб по ГОСТ 10701, ГОСТ 8732 или гнутыми из листа. Для обечаек, устанавливаемых в стенке усреднителя, сварной шов должен контролироваться радиографией

По прочности изготовления листовой прокат должен применяться:

- по толщине повышенной точности АТ,
- по ширине повышенной точности АШ,
- по плоскости высокой точности ПВ

Класс сплошности листового металла — 2. Проведение дополнительных испытании на ударный изгиб согласно тревованиям руководства безопасности, приказ Ростехнадзора № 780 от 26.12.2012

4. КОНСТРУКЦИИ РЕЗЕРВУАРА

Усреднитель представляет собой вертикальный цилиндр с коническим днищем, имеющим уклон 1:100 от центра к краю усреднителя и конического безкаркасного покрытия. Крыша усреднителя – безкаркасная коническая.

Днище состоит из сегментной части t=6 мм.

Стенка усреднителя имеет 5 поясов толщиной от 9 до 4 мм. Для обслуживания оборудования, расположенного на покрытии и в стенке, усреднитель снабжен площадкой с ограждением, наружной лестницей.

В состав данного проекта входят только штуцера и люки, непосредственно примыкающие к корпусу усреднителя.

Размеры люков и штуцеров, их количество и расположение выполнены по Техническому заданию. При проектировании усреднителя использовались следующие нормативные документы:

- а) СП 20.13330.2011 "Нагрузки воздействия";
- б) СНиП 2.09.03—85 "Сооружения промышленных предприятий";
- *в) СП 16.13330.2011 "Стальные конструкции";*
- г) ПБ 03-605-03 "Правила устройства вертикальных цилиндрических резервуаров для нефти и нефтепродуктов".
- *q)* Типовой проект 903-9-25.89 Стальной бак-аккумулятор для горячей воды объемом 700 куб.м (применительно для резервуара объемом 570 куб. м.)

5. ИЗГОТОВЛЕНИЕ УСРЕДНИТЕЛЯ.

Кромки листов должны обрабатываться фрезерованием. Допуск по ширине — 0,3 мм, по длине — 0,2. После окончания сварки швы должны быть зачищены и проверены на плотность. При изготовлении и монтаже стенки усреднителя должны соблюдаться следующие требования:

- смещение кромок не более 1 мм;
- подрез не более 5% толщины листа:
- угловатость монтажного шва не более 10 мм на базе измерения 500 мм;
- наличие в стенке усреднителя поверхностных дефектов (трещин) не допускается.

Изготовление, монтаж, испытания и приемка стальных конструкций должны соответствовать требованиям настоящего проекта, а также:

- а) СНиП 3.03.01—87 "Несущие и ограждающие конструкции";
- б) ПБ 03-605-03 "Правила устройства вертикальных цилиндрических стальных резервуаров";
- в) технологии изготовления завода-изготовителя.
- **а)** Типовой проект 903-9-25.89 Стальной бак-аккомулятор для горячей воды объемом 700 куб.м

(применительно для резервуара объемом 570 куб. м.).

Приварка к стенке усреднителя конструктивных элементов, не предусмотренных или не привязанных по расположению в настоящем Проекте, должна выполняться с учетом требований руководства безопасности, приказ Ростехнадзора № 780 от 26.12.2012г. Они должны соединяться со стенкой на накладках или косынках из стали Ст3сп5 с обваркой по контуру. Проекты или технические решения, на основании которых осуществляется приварка дополнительных конструктивных элементов к стенке усреднителя, должны быть согласованы с разработчиком проекта КМ

6. КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ ШВОВ

При изготовлении полотнища стенки и днища следует выполнить радиографический контроль стыковых сварных швов в объеме, предусмотренным для PBC VI класса опасности согласно требованиям п. 8.3.8 ГОСТ P 52910-2008 На монтаже контролируются:

Радиографическим методом:

- вертикальный монтажный шов 100%;
- стыковые швы окраечных листов днища в местах примыкания к ним стенки усреднителя. Длина снимка не менее 240мм.

Результаты радиографического метода контроля сварных соединений должны удовлетворять требованиям ГОСТ 23055-78 для 4 класса сварных соединений. Методом цветной дефектоскопии:

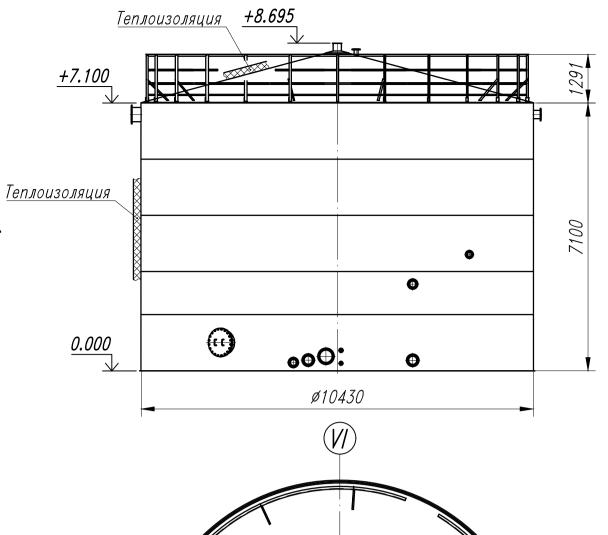
- швы вварки люков;
- места приварки сборочных приспособлений после их зачистки.

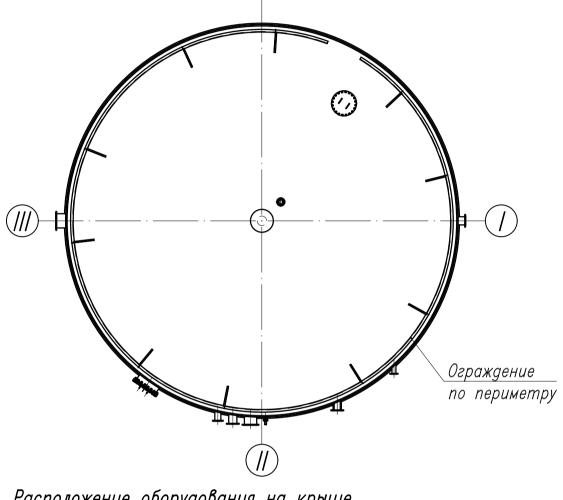
быть предварительно зачищены и проверены на плотность.

Методом вакуумирования:

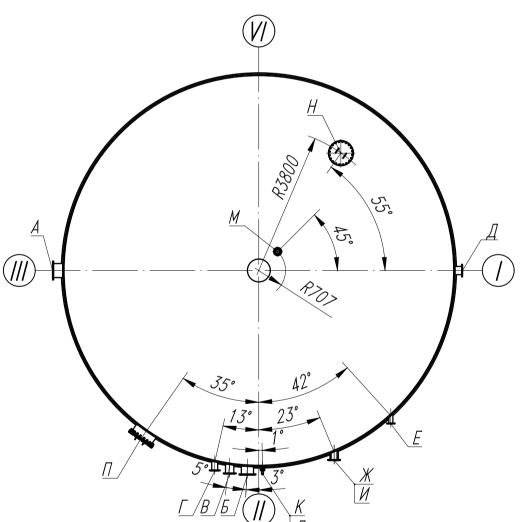
- стыковые швы центральной части днища;
- сварные соединения крыши усреднителя. Приварку стенки к днищу разрешается проверить на герметичность керосиновой пробой. Участки швов крыши, попадающие под усиливающие листы врезок и накладки при монтаже площадок, должны

7. ГИЛРАВЛИЧЕСКИЕ ИСПЫТАНИЯ


Усреднитель должен быть подвергнут гидравлическим испытаниям, которые включают испытание стенки на прочность. Испытания цсреднителя проводят после окончания всех работ по монтажу и


Высота налива воды 7100 мм соответствует максимальной высоте налива продукта плотностью 1.00 m/m^3 .

Испытания проводятся монтажной организацией при участии представителей строительного контроля заказчика и авторского надзора проектировщика. После окончания испытаний составляют акт установленной формы между монтажником и заказчиком о завершении монтажа металлоконструкций усреднителя и приемке усреднителя для выполнения антикоррозионной защиты, установки оборудования и других работ.


8. РЕКОМЕНДАЦИИ ПО АНТИКОРРОЗИЙНОЙ ЗАЩИТЕ

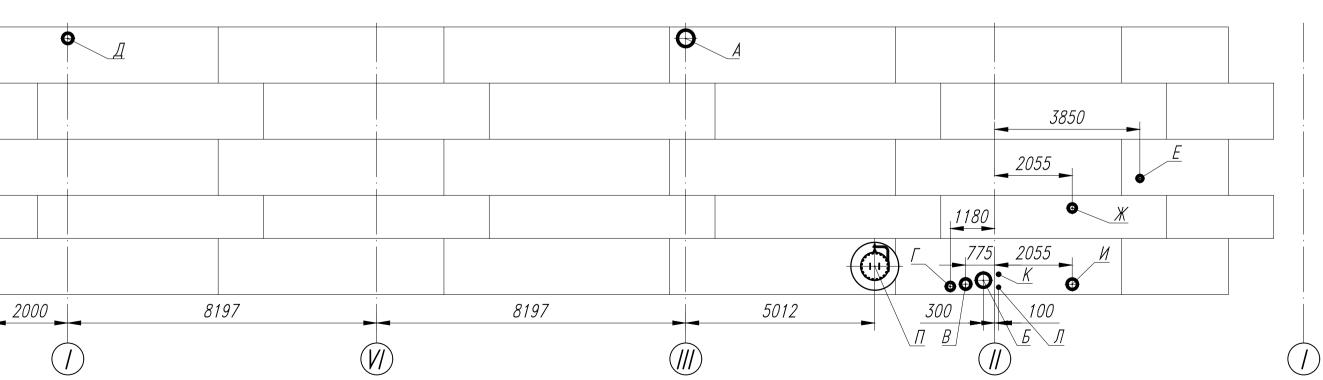
- 1. Нерулонируемые конструкции усреднителя, а также наружные поверхности рулонов подлежат защите от коррозии на время транспортирования и хранения путем нанесения в два слоя грунта ΓΦ-0119 ΓΟCT 23343-78.
- 2. Припусками на коррозию (увеличением по сравнению с расчетной толщиной, толщины элементов металлоконструкций усреднителя для предотвращения возможной потери сечения в результате коррозии до безопасной величины).
- 3. Проведением периодического обследования усреднителя через каждые 5 лет с устранением коррозийных дефектов и восстановлением защитных покрытий — частично или полностью в зависимости от состояния защитного покрытия.
- 4. Предусмотреть:
- сплошные сварные швы при приварке патрубков и воротников на крыше;
- защиту от коррозии зоны сварного шва нахлесточного соединения настила крыши и сварных швов патрубков с внутренней стороны крыши;
 - сплошные швы крепления подкладок под опорные элементы ограждений и площадок.

Расположение оборудования на крыше.

ОСНОВНЫЕ ЭКСПЛУТАЦИОННЫЕ ХАРАКТЕРИСТИКИ	<i>1 PE3EPBYA</i>	PA
Параметры	Ед. изм.	Величина
1. Номинальный объем усреднителя	M ³	600
2. Рабочий уровень налива	ММ	6800
3. Полезный объем усреднителя при рабочем ур. налива	M ³	580
4. Плотность продукта	m/м³	1,000
5. Максимальная температура продукта	C°	+15
6. Внутреннее избыточное давление	кПа	1,0
7. Вакуум	кПа	0,25
В. Минимальная температура окружающей среды	C°	минус 30
9. Снеговая нагрузка (расчетная)	кПа	2,0
10. Ветровая нагрузка (нормативная)	кПа	0,3
11. Сейсмичность района строительства	баллов	6
14. Припуск на коррозию стенки	ММ	2
15. Припуск на коррозию днища	ММ	2
16. Припуск на коррозию крыши	ММ	1
17. Класс опасности резервуара по ГОСТ Р 52910—2008	класс	VI

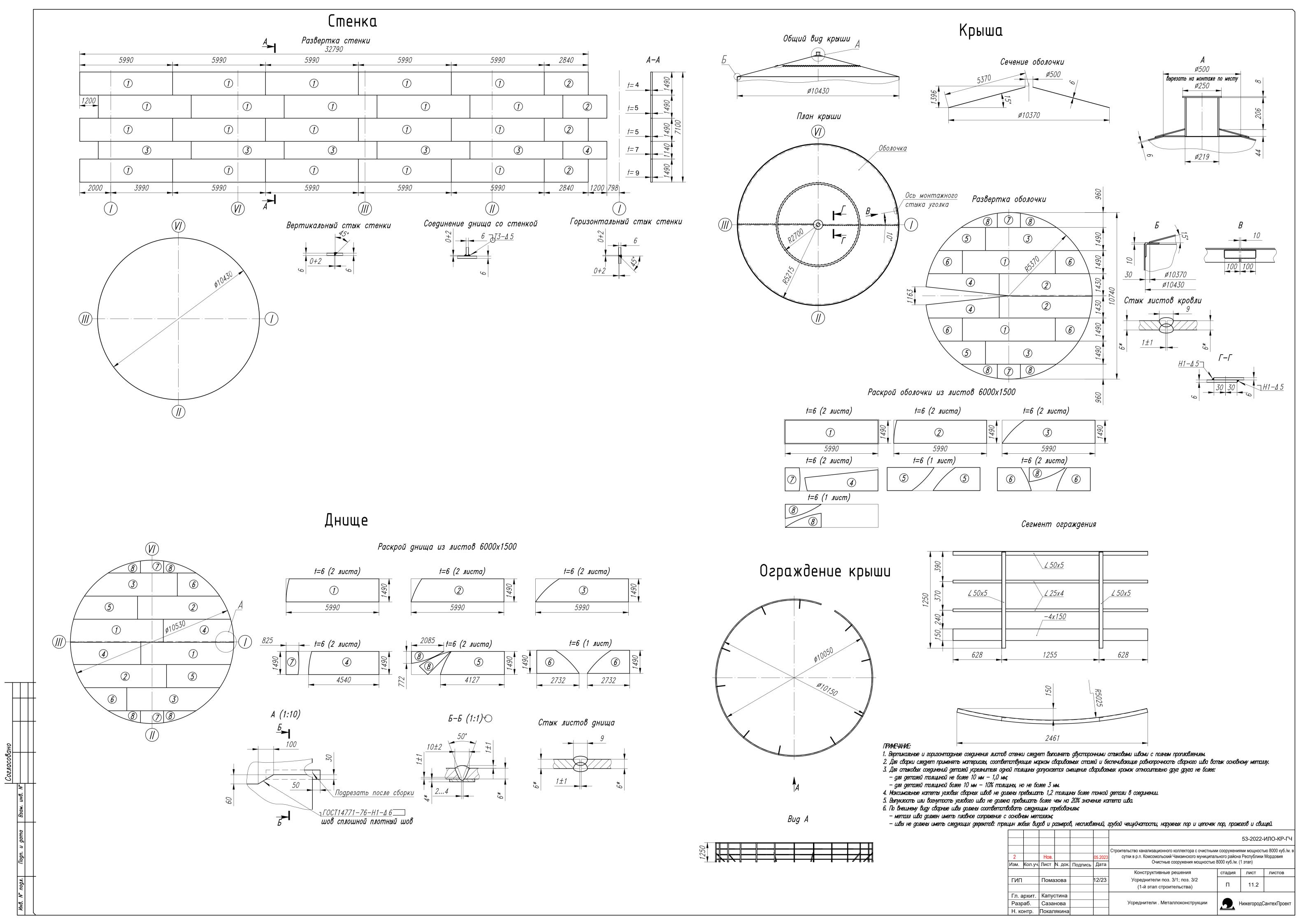
	Конструктивные элементы резервуара	Масса, кг.
1	Стенка	11000
2	Днище	4150
3	Крыша	4250
4	Ограждение на крыше	500
5	Люки и патрубки и др. оборудование	1000
	Итого:	20900**

ПРИМЕЧАНИЕ:


1. При расчете усреднителя на прочность расчетный уровень налива продукта и воды при гидроиспытаниях принят на полную высоту стенки.

2. ** Вес будет уточняться при разработке КМД.

Таблица штуцеров


			'	
Обоз- наче- ние	Наименование	Кол.	Ду, мм	Давле— ние ус— ловное Ру,МПа
Α	Вход сточной воды	1	<i>350</i>	1,6
Б	Выход сточной воды	1	300	1,6
В	Выход сточной воды	1	200	1,6
Γ	Гидроперемешивание	1	150	1,6
Д	Анаэробный рецикл	1	200	1,6
Ε	Вход сточной воды	1	100	1,6
Ж	Перелив	1	150	1,6
И	Опорожнение	1	200	1,6
K	Прибор КИП	1	25	1,6
Л	Прибор КИП	1	20	1,6
М	Патрубок дыхательный	1	100	1,6
Н	Люк световой	1	500	1,0
//	Люк-лаз	1	600	1,0

Расположение оборудования на стенке. Вид снаружи

53-2022-ИЛО-КР-ГЧ								
а Республики Мордовия	ьного района	ительство канализационного коллектора с очистным сутки в р.п. Комсомольский Чамзинского муниципал	05.2023			Нов.		2
(T 9Tall)	оооо куо./м. (Очистные сооружения мощностью	Дата	Подпись	N. док.	Лист	Кол.уч.	Изм.
лист листов	стадия	Конструктивные решения						
111		Усреднители поз. 3/1; поз. 3/2	12/23		зова	Пома		ГИП
11.1	11	(1-й этап строительства)						
,		Усреднители . Общий вид.			стина	Капу	архит.	Гл. а
	_	· · · · · · · · · · · · ·						

Разраб. Сазанова НижегородСантехПроект Схема расположения оборудования Н. контр. Покалякина

